## Decoherence and the Appearance of a Classical World in Quantum TheoryErich Joos, H. Dieter Zeh, Claus Kiefer, Domenico J. W. Giulini, Joachim Kupsch, Ion-Olimpiu Stamatescu Springer Science & Business Media, 9 ÁÕ.¤. 2013 - 496 Ë¹éÒ When we were preparing the first edition of this book, the concept of de coherence was known only to a minority of physicists. In the meantime, a wealth of contributions has appeared in the literature - important ones as well as serious misunderstandings. The phenomenon itself is now experimen tally clearly established and theoretically well understood in principle. New fields of application, discussed in the revised book, are chaos theory, informa tion theory, quantum computers, neuroscience, primordial cosmology, some aspects of black holes and strings, and others. While the first edition arose from regular discussions between the authors, thus leading to a clear" entanglement" of their otherwise quite different chap ters, the latter have thereafter evolved more or less independently. While this may broaden the book's scope as far as applications and methods are con cerned, it may also appear confusing to the reader wherever basic assumptions and intentions differ (as they do). For this reason we have rearranged the or der of the authors: they now appear in the same order as the chapters, such that those most closely related to the "early" and most ambitious concept of decoherence are listed first. The first three authors (Joos, Zeh, Kiefer) agree with one another that decoherence (in contradistinction to the Copen hagen interpretation) allows one to eliminate primary classical concepts, thus neither relying on an axiomatic concept of observables nor on a probability interpretation of the wave function in terms of classical concepts. |

### ¨Ò¡´éÒ¹ã¹Ë¹Ñ§Ê×Í

Ë¹éÒ 10

The Superposition principle can also be successfully applied to states that may

be generated by

classical mechanics, a symmetric Hamiltonian

solution ...

The Superposition principle can also be successfully applied to states that may

be generated by

**means**of symmetry transformations from asymmetric ones. Inclassical mechanics, a symmetric Hamiltonian

**means**that each asymmetricsolution ...

Ë¹éÒ 15

This could be investigated by

mesoscopic objects (see Brune et al. 1996). However, in order to precisely

determine the subtle limit where measurement by the environment becomes

negligible, ...

This could be investigated by

**means**of more sophisticated experiments withmesoscopic objects (see Brune et al. 1996). However, in order to precisely

determine the subtle limit where measurement by the environment becomes

negligible, ...

Ë¹éÒ 18

According to this definition, quantum expectation values must not be understood

as

previously known (or conjectured) classical theory by

rules”.

According to this definition, quantum expectation values must not be understood

as

**mean**values in an ensemble that ... they can often be derived from apreviously known (or conjectured) classical theory by

**means**of “quantizationrules”.

Ë¹éÒ 34

Similarly, expectation values (A) = tr(Ap)/tr(p) of observables A formally replace

pure) quantum state instead of being postulated by

Similarly, expectation values (A) = tr(Ap)/tr(p) of observables A formally replace

**mean**values a = | dpdq a(p,q)p(p, q) of ... matrix has to be derived from that of a (pure) quantum state instead of being postulated by

**means**of quantization rules.Ë¹éÒ 384

¤Ø³¶Ö§¢Õ´¨Ó¡Ñ´¡ÒÃ´ÙË¹Ñ§Ê×ÍàÅèÁ¹ÕéáÅéÇ.

¤Ø³¶Ö§¢Õ´¨Ó¡Ñ´¡ÒÃ´ÙË¹Ñ§Ê×ÍàÅèÁ¹ÕéáÅéÇ.

### ¤ÇÒÁ¤Ô´àËç¹¨Ò¡¼ÙéÍ×è¹ - à¢ÕÂ¹º·ÇÔ¨ÒÃ³ì

#### LibraryThing Review

º·ÇÔ¨ÒÃ³ì¨Ò¡¼Ùéãªé - fpagan - LibraryThingDecoherence theory explains why quantum weirdness (superposition, entanglement, etc) is absent at the macroscopic level (except for such exotica as superfluidity, superconductivity, and Bose-Einstein ... ÍèÒ¹¤ÇÒÁ¤Ô´àËç¹©ºÑºàµçÁ

### à¹×éÍËÒ

1 | |

10 | |

41 | |

Decoherence in Quantum Field Theory | 181 |

Consistent Histories and Decoherence | 227 |

Superselection Rules and Symmetries | 259 |

Open Quantum Systems | 316 |

Stochastic Collapse Models | 357 |

Related Concepts and Methods | 383 |

A1 Equation of Motion of a Mass Point | 394 |

Green Functions | 402 |

A4 Quantum Correlations | 415 |

A6 Galilean Symmetry | 425 |

A7 Stochastic Processes | 432 |

Stochastic Differential Equations | 439 |

### ©ºÑºÍ×è¹æ - ´Ù·Ñé§ËÁ´

### ¤ÓáÅÐÇÅÕ·Õè¾ººèÍÂ

algebra approximation assumed atom Brownian motion Chap classical coherence commute components concept configuration consistent histories corresponding coupling decay decohered decoherence decoherence functional defined degrees of freedom density matrix dependence derived described Diósi discussed distribution dynamics eigenstates energy ensemble entanglement entropy environment environmental decoherence equation of motion evolution example expectation values factor field finite formal Ghirardi given Hamiltonian Heisenberg picture Hence Hilbert space initial interaction interference interpretation Joos Kiefer leads linear macroscopic master equation means molecules momentum Neumann nonlocal observables oscillator parameter particle phase space photon physical pointer position probability projection operators projectors properties pure quantum mechanics quantum theory quantum Zeno effect reduced density matrix represent representation result rotation scattering Schrödinger equation Sect spatial statistical operator subspaces subsystem superposition principle superselection rules superselection sectors theorem tion transition unitary variables vector wave function wave packets Wigner function Zeno effect Zurek